

MATHEMATICS HIGHER LEVEL PAPER 1

Wednesday 4 May 2011 (afternoon)

0 0	0 0				
-------	-----	--	--	--	--

Candidate session number

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Ma	ximum mark: 6]	
	The	quadratic function $f(x) = p + qx - x^2$ has a maximum value of 5 when $x = 3$.	
	(a)	Find the value of p and the value of q .	[4 marks]
	(b)	The graph of $f(x)$ is translated 3 units in the positive direction parallel to the x-axis. Determine the equation of the new graph.	[2 marks]

2. [Maximum mark: :	5/	/
----------------------------	----	---

Consider the matrix $\mathbf{A} = \begin{pmatrix} 0 & 2 \\ a & -1 \end{pmatrix}$.

(0)	Find the matrix A^2 .	[2 marks]
(a)	ring the matrix A.	12 marks

(b)	If det $A^2 = 16$, determine the possible values of a.	[3 marks]

 	 	 •
 	 	 •

		 		 					-			-			 									 		 		

3. [Maximum mark: 6]

The random variable X has probability density function f where

$$f(x) = \begin{cases} kx(x+1)(2-x), & 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

(a) Sketch the graph of the function. You are not required to find the coordinates of the maximum. [1 mark]

(b)	Find the value of k .	[5 marks]

4.	[Maximum	mark:	6

The complex numbers $z_1 = 2 - 2i$ and $z_2 = 1 - \sqrt{3}i$ are represented by the points A and B respectively on an Argand diagram. Given that O is the origin,

(a)	find AB, giving your answer in the for	m $a\sqrt{h} - \sqrt{3}$ where $a, h \in \mathbb{Z}^+$	[3 marks]
(a)	illia 11D, giving your answer in the for	$u_1 u_2 u_3 u_4 u_5 u_5 u_6 u_6 u_6 u_6 u_6 u_6 u_6 u_6 u_6 u_6$	J marks

(b)		ca	alo	cu	ıla	ate	Э	A	.Ĉ	В	} :	in	t	eı	'n	18	3 (of	f	π	; .																																	I	[3	3 1	m	а	rŀ	ks	;]
	•			٠			•	•		٠	•		•	٠	•	•						 ٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	•	•	•	•	•	•	•	 •	٠	٠	•	 •	٠	•	•	 										

			-													 									 	-		
												-				 									 			

•			•		•	•		•	 			•			 			•	•		•	•	•				 •	•	•	 	•		 •	•	•	•	•	 •	•	•			
	_	 		_	_		_		 _	_	_		_	 _	 	 	_			_				_	_	_	 _	_	_	 		_	 _	_				 _	_		_	 	_

5. [Maximum mark: 6]

The diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = 2.

(a) Sketch the graph of
$$y = \frac{1}{f(x)}$$
.

[3 marks]

(b) Sketch the graph of y = x f(x).

[3 marks]

6. [Maximum mark: 5]

In the diagram below, [AB] is a diameter of the circle with centre O. Point C is on the circumference of the circle. Let $\overrightarrow{OB} = b$ and $\overrightarrow{OC} = c$.

(a)	Find an expression for \overrightarrow{CB} and for \overrightarrow{AC} in terms of \boldsymbol{b} and \boldsymbol{c} .	[2 marks]
(b)	Hence prove that AĈB is a right angle.	[3 marks]

.....

.....

7. [Maximum mark: 5]

The diagram shows a tangent, (TP), to the circle with centre O and radius r. The size of \hat{POA} is θ radians.

(a)	Find the area of triangle AOP in terms of r and θ .	[1 mark]
(b)	Find the area of triangle POT in terms of r and θ .	[2 marks]
(c)	Using your results from part (a) and part (b), show that $\sin \theta < \theta < \tan \theta$.	[2 marks]

8. [Maximum mark: (

A function is	defined by	$h(x) = 2e^x -$	$-\frac{1}{e^x}$, $x \in \mathbb{R}$.	Find an expression	for $h^{-1}(x)$.

9.	[Maximum	mark:	7]

A batch of 15 DVD players contains 4 that are defective. The DVD players are selected at random, one by one, and examined. The ones that are checked are not replaced.

(a)	What is the probability that there are exactly 3 defective DVD players in the first
	8 DVD players examined?

[4 marks]

(b)	What is the probability that the 9th DVD player examined is the 4th defecti	ve
	ne found?	

[3 marks]

10. [Maximum mark: 8]

An arithmetic sequence has first term a and common difference d, $d \neq 0$. The $3^{\rm rd}$, $4^{\rm th}$ and $7^{\rm th}$ terms of the arithmetic sequence are the first three terms of a geometric sequence.

(a) Show that $a = -\frac{3}{2}d$.

[3 marks]

(b) Show that the 4th term of the geometric sequence is the 16th term of the arithmetic sequence.

[5 marks]

		 													 								-				-						 -
			•		•	•		•		•	•		•	•		•	•		•		·	•		 •	•	•		 ·	•				
		 							 						 			 									-						 · -
		 													 			 												 			 . .

Do NOT write solutions on this page. Any working on this page will NOT be marked.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 15]

The curve C has equation $y = \frac{1}{8}(9 + 8x^2 - x^4)$.

- (a) Find the coordinates of the points on C at which $\frac{dy}{dx} = 0$. [4 marks]
- (b) The tangent to C at the point P(1, 2) cuts the x-axis at the point T. Determine the coordinates of T. [4 marks]
- (c) The normal to C at the point P cuts the y-axis at the point N. Find the area of triangle PTN. [7 marks]

12. [Maximum mark: 20]

(a) Factorize $z^3 + 1$ into a linear and quadratic factor. [2 marks]

Let $\gamma = \frac{1+i\sqrt{3}}{2}$.

- (b) (i) Show that γ is one of the cube roots of -1.
 - (ii) Show that $\gamma^2 = \gamma 1$.
 - (iii) Hence find the value of $(1-\gamma)^6$. [9 marks]

The matrix \mathbf{A} is defined by $\mathbf{A} = \begin{pmatrix} \gamma & 1 \\ 0 & \frac{1}{\gamma} \end{pmatrix}$.

- (c) Show that $A^2 A + I = 0$, where 0 is the zero matrix. [4 marks]
- (d) Deduce that
 - (i) $A^3 = -I$;
 - (ii) $A^{-1} = I A$. [5 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

- **13.** [Maximum mark: 25]
 - (a) (i) Sketch the graphs of $y = \sin x$ and $y = \sin 2x$, on the same set of axes, for $0 \le x \le \frac{\pi}{2}$.
 - (ii) Find the x-coordinates of the points of intersection of the graphs in the domain $0 \le x \le \frac{\pi}{2}$.
 - (iii) Find the area enclosed by the graphs.

[9 marks]

- (b) Find the value of $\int_0^1 \sqrt{\frac{x}{4-x}} dx$ using the substitution $x = 4\sin^2\theta$. [8 marks]
- (c) The increasing function f satisfies f(0) = 0 and f(a) = b, where a > 0 and b > 0.
 - (i) By reference to a sketch, show that $\int_0^a f(x) dx = ab \int_0^b f^{-1}(x) dx.$
 - (ii) **Hence** find the value of $\int_0^2 \arcsin\left(\frac{x}{4}\right) dx$.

[8 marks]